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LETTER TO THE EDITOR

Conditions for the existence of oscillations in the distribution
of the vibrational quanta of squeezed states

I Menda$ and D B Popovié
Institute of Physics, PO Box 57, 11001 Belgrade, Serbia, Yugoslavia

Received 9 April 1992, in final form 18 May 1992

Abstract. The conditions for the existence of oscillations in the distribution of the vibra-
tional quanta for the general case of the time-evolving squeezed state (which does not
remain a minimum-uncertainty state) of the one-dimensional harmonic oscillator are
investigated. To aid this, new parametrization of squeezed states is introduced. It is found
that in addition to the usual conditions which produce osciilations, the value of the phase
¢ of the complex parameter z (which is the argument of the Hermite polynomial H,
appearing in the expression for the expansion coeflicient a, of the squeezed state in the
number state basis} must have a value in the vicinity of { =0 or £ = 7 (|[Im{z}| « |z]). It is
shown how this necessary condition results from the explicit expression for |H,(z)[%

Squeezed light [1-4] has a lower quantum noise in one of its ﬁelcl quadratures than
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has led to suggestions for its use, among other things, for detecting gravitational waves
[5] and in optical telecommunication systems [6]. Inasmuch as the quantized elec-
tromagnetic field is equivalent to a collection of harmonic oscillators, a mathematical
description of squeezed states is rooted in the quantum mechanics of the one-
dimensional harmonic oscillator. The purpose of this letter is, firstly, to provide a
different parametrization of squeezed states of the one-dimensional harmonic oscillator.
This parametrization turns out to be, as we shall see, more convenient for investigating
the conditions for the existence of oscillations in the probability distribution of the
vibrational quanta, to which we turn our attention in the second part of the letter.
These oscillations, and the conditions which produce them, were, for the minimum-
uncertainty squeezed states, first discussed in 1985 by Wheeler [7] and later by Schleich
and Wheeler [8-10]. They found that, loosely speaking, a minimum-uncertainty
squeezed state exhibits oscillations in the distribution of the vibrational quanta for
large squeezing and sufficiently large vibrational quantum numbers. The physical
principle behind oscillations is interference in phase space [9, 10]. Here we consider
the oscillations for the more general case of the time-evolving squeezed state (which
does not remain a minimum-uncertainty state) and find that, additionally, the value
of the phase { of the complex parameter z (which is the argument of the Hermite
polynemial H,(z) appearing in the expression for the expansion coefficient a, of the
squeezed state in the number state basis) is important. In order to obtain the oscillations
itis necessary that the value of the phase be in the vicinity of { =0or { = 7 (|Im{z}| « |z|).
The generic case is depicted in figure 1. Finally, we demonstrate how this necessary
condition results from the explicit expression for |H,(z)|.
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First, we summarize briefly relevant results and establish notation. The Schrédinger
picture is used throughout. The general solution of the time-dependent Schrodinger
equation for the harmonic oscillator reads

¥(x, t)= Y a, eXP(—%E,.t)un(x)- (1)
n=0

Here u,(x) denotes the harmonic oscillator eigenfunction corresponding to the nth

energy level E, [11]. When we take [3, 12, 13]

Sn 1/2
auEN(m) H,.(z} (2)
we obtain the sq}leezed state ¥, (x, 1). Here, H, is the nth Hermite polynomial, while
s=s,+is,=|[sle'® and z=z,+iz, =|z| €' are the complex parameters used to specify
the squeezed state. There are altogether four independent real parameters s;, s., 2,
and z, (or, equivalently |s|, 8, |z] and ). In order to ensure the convergence of the
series (1) we must take |s] < 1. The parametrization introduced here differs from the
one usually used. We found that it leads to a somewhat simpler parametric dependence
of the oscillations in the probability distribution of the vibrational quanta. The complex

quantity N, appearing in (2}, is determined by the normalization condition X |a,|*=1:

N =(1—[s{)"* exp[—w'—ﬂlj 3)
1—|s|
Explicitly, the time-dependent wavefunction representing the squeezed state is
Yolx, 1) =y exp(—8(x —£)*) (4)
where
: 2
a5 ®
©
23[20_81/22 .y 23,"20,|s|1,"2|z| i o
EE—“—Q_ e '“‘=-————C+' —e + {7
with
C.=1xse % &, =0/2+~wt (8)

The squeezed states have a number of interesting properties. They are not mutually
orthogonal. The set {¥_(x, 1)} is (over)complete. The probability density |¥,(x, 1)|*
is normalized Gaussian with halfwidth changing periodically in time and depending
only on the squeeze parameter s (it is independent of the other complex parameter
z). The general squeezed state ¥,,(x, ¢) in time is not a minimum-uncertainty state;
nevertheless, every full period it becomes four times a minimum-uncertainty state. The
uncertainties 8x and 8p oscillate in width, out of phase; the uncertainty in one of the
two dynamically conjugate variables x and p can become less than the corresponding
one in a coherent state. When |s| > 0-and simultaneously |z| > 40, in such a way that
the product sz’ remains equal to a complex constant (=a?/2), reduction to the
corresponding coherent state is easily observed. In particular, equation (2) gives in
this limiting case a, - (a"/n!"?) exp(—|a|*/2). Reduction to the squeezed vacuum state
(|z1= 0) is also easily observed.
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Next, we turn our attention to the conditions which produce oscillations in the
probability distribution

1"
2"n!
of the vibrational quanta of squeezed states. Firstly, we note that the oscillations (if
any) are time independent. According to the semi-classical considerations presented
in {8-10] the probability }a,|” of finding n vibrational quanta in the squeezed state is
governed by the overlap in the phase space between the elliptical band (with the area

2wrh), representing the nth number state w,(x), and the squeezed-state uncertainty
ellipse [13, 14]

[x =% [p—p(O]
(8x)’ (8p)’
based on the joint x-p probability distribution (Wigner-Cohen function) P.(x, p,¥)=
[W.(x, )PP p, )7 introduced in [15, 16]. Here, ®,(p, 1) denotes the corresponding
momentum space wavefunction. The centre of the squeezed-state uncertainty ellipse
is defined with

|aa* = |NP* 2 | Hol2) (9)

=1 (10}

e+ 6%e*

Yy =X cos{wt —¢) (11)

x(t)={x)=

and

—2ik|8’(e — e*
pty= (=" D)

The point (xJ[t), p(t)) follows classical motion of the harmonic oscillator with

nrmaelitnda
ALUPHILUUW

= —mwX sin(w! — ). (12)

2/%g]s]"]

1-|sf’

X= (1+|s]*—2]s| cos 2¢)"? (13)

and phaseshift

_ sin(8/2+¢) —|s| sin(6/2—¢{)
B os(8/2+ 0)~|sf cas(0/2- 1) (14)

In (10}, 8x and 8p denote the uncertainties

1 1+|s*— 2|s| cos(@ —2wt):|”2
Bx = = 15
T Tk e e =
2'/2 +]s*+2 8 -2wt)]"?
sp =2l ol ﬁ|8|v=:fl|'l Is| _ISIlch':( w)] (16)
(b+o ¥ Lo | 1—15| i
with
1/2
og(_-fi—) (17)
2mw ’

denoting the halfwidth of the harmonic oscillator ground state tiy(x). The phase space
path, traced by the centre of the squeezed-state uncertainty ellipse, is therefore defined
with

[xc(f)]l [p(0)])
X? (irmuX)2 =t (18)
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Consider now, for example, the special case wt — ¢ =2k, with k an integer. In order
to get intersection (and, consequently, oscillations [8-10]) between the elliptical band,
representing the nth number state u,(x), and the squeezed-state uncertainty ellipse,
the conditions X <2on'/? and P < (8p),,,, must be approximately satisfied. Here

ﬁnl,t'z XZ 1/2
P= - .
o (l 40-2n) (19)

Such considerations lead in this case (and in general as well, since the oscillations are
time independent) to the condition n.;, <n <n,,,, with n,.,=~(X/2¢)* and n,,, ~
Min T (1 +]5])/(1—]s]) which must be fulfilled for oscillations in the probability distribu-
tion of excitation to appear. We found, however, that this is not sufficient; additionally,
the phase { of the complex parameter z must be in the vicinity of {=0 or {=
17(|Im{z}|<< |z]). In such a case, n,, reduces to nm,,.~2|s|lz|2/(1+|s|) Moreover,

mm->]z| /2 in the limit of large squeezing (when the squeeze parameter |s| > 1). A
generic example is depicted in figure 1. The observed dependence on ¢ comes from
the factor |H,(z)|* in (9). Indeed, with the help of the explicit expression for H,(z)
given in [17] we obtain, after some algebra,

|H,(2) = 2(n1)? ["f’ (—D*Ci cos(2k) (20)

with [ n/2] denoting the integer part of n/2 and with positive coefficients C{" = C§™(|z])
defined via c

1 [n/2]—k (2}z|)2(n7kA21)
146, S0 Nk+H1(n—201n—-2k-2D1

In the case ¢ =0 or { = =, the sum in (20) reduces to the alternating one =31 (-1)*C{™.
Because of delicate balancing of terms in this sum, an increase in the value of the
vibrational quantum number n can (and usually does) result in a large change in its
value leading to the observed oscillations, The factor | N|* (|s|"/2"n!) modulates and/or
suppresses these oscillations (present, in principle, for any |s]). In the other extreme
case, when ¢ = 7r/2 or { =37/2 the sum in (20) reduces simply to ZL31 C{™ leading
to smooth and monotonic variation with n, and the oscillations are absent.

In conclusion, in this letter we have discussed the conditions for the existence of
oscillations in the distribution of the vibrational guanta for the general case of the
time-evolving squeezed state (which does not remain a minimum-uncertainty state) of
the one-dimensional harmonic oscillator. In particular, we introduced a different
parametrization of squeezed states and, with its help, found that in addition to the
usual conditions which produce oscillations, the value of the phase { of the complcx

parameter z, which ig the arenment of the Hermite nnl\rnnmlnl nnnpnpqu in the
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expression for the expansion coefficient a, of the squeezed state in the number state
basis, is important. We found that, in order to obtain the oscillations, the phase must
have a value in the vicinity of ¢ =0 or { = . We showed how this necessary condition
results from the explicit expression for |H,(2)*.

The oscillations discussed in this letter have been recognized as a striking feature
of highty non-classical, squeezed states. To detect these states in the realm of quantum
optics, using oscillatory counting distribution, it is important to know the conditions
leading to the oscillations. From a wider perspective, it has become possible in recent
years to almost perfectly isolate single quantum harmonic oscillators from their environ-
ment [18-19], thus enabling detailed investigations of the dynamics of this simplest

cim= (21)
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Figure 1. Probability |a,[* of finding n vibrational quanta in a squeezed state for three
different choices of the phase ¢ indicated on the figure. All curves here are plotted, for
definiteness, for the same value |z| = 6. The probability is independent of time f and phase

# of the complex squeeze parameter s. As { increases from the zero value the oscillations
rapidly vanish.

of all quantum systems. Such studies will, hopefully, yield a deeper understanding of
quantem mechanics of single, isolated systems.
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