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Abstract. The conditions for the existence of oscillations in the distribution of the vibra- 
tional quanta for the general case of the time-evolving squeezed State (which does not 
remain a minimum-uncertainty state) of the one-dimensional harmonic oscillator are 
investigated. To aid this, new parametrization of squeezed states is introduced. It is found 
that in addition to the usual conditions which produce oscillations, the value of the phase 

of the complex parameter I (which is the argument of the Hemite polynomial H .  
appearing in the expression for the expansion coefficient a. of the squeezed state in the 
number state basis) must have a value in the vicinity of c = O  or 5 =  v (IIm(z)l<< Irl). It is 
shown how this necessary condition results from the explicit expression for lHn(z)12. 

Squeezed light [1-4] has a lower quantum noise in one of its field quadratures than 

has led to suggestions for its use, among other things, for detecting gravitational waves 
[ 5 ]  and in optical telecommunication systems [6]. Inasmuch as the quantized elec- 
tromagnetic field is equivalent to a collection of harmonic oscillators, a mathematical 
description of squeezed states is rooted in the quantum mechanics of the one- 
dimensional harmonic oscillator. The purpose of this letter is, firstly, to provide a 
different parametrization of squeezed states of the one-dimensional harmonic oscillator. 
This parametrization tums out to he, as we shall see, more convenient for investigating 
the conditions for the existence of oscillations in the probability distribution of the 
vibrational quanta, to which we turn our attention in the second pari of the letter. 
These oscillations, and the conditions which produce them, were, for the minimum- 
uncertainty squeezed states, first discussed in 1985 by Wheeler [7] and later by Schleich 
and Wheeler [8-10]. They found that, loosely speaking, a minimum-uncertainty 
squeezed state exhibits oscillations in the distribution of the vibrational quanta for 
large squeezing and sufficiently large vibrational quantum numbers. The physical 
principle behind oscillations is interference in phase space [9,10]. Here we consider 
the oscillations for the more general case of the time-evolving squeezed state (which 
does not remain a minimum-uncertainty state) and find that, additionally, the value 
of the phase c of the complex parameter z (which is the argument of the Hermite 
polynomial H J z )  appearing in the expression for the expansion coefficient a. of the 
squeezed state in the number state hasis) is important. In order to obtain the oscillations 
itisnecessarythatthevalueofthephasebeinthevicinityofb=Oor5= T (IIm{z}l<< 121). 

The generic case is depicted in figure 1. Finally, we demonstrate how this necessary 
condition results from the explicit expression for lH.(z)I2. 
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First, we summarize briefly relevant results and establish notation. The Schrodinger 
picture is used throughout. The general solution of the time-dependent Schrodinger 
equation for the harmonic oscillator reads 

m 

Here u.(x) denotes the harmonic oscillator eigenfunction corresponding to the nth 
energy level E. [ I l l .  When we take [3,12,13] 

1/2 

a.=N(&) H J z )  (2) 

we obtain the squeezed state Y A x ,  f). Here, H. is the nth Hermite polynomial, while 
s = si +is, = [SI eie and z = z ,  +iz2 = 121 eir are the complex parameters used to specify 
the squeezed si&. Ti-nere are aiiugeiiiei four independeni reai parameters si, s2. t, 
and z2 (or, equivalently Is(, 0, !zI and 5). In order to ensure the convergence of the 
series (1) we must take Is1 < 1. The parametrization introduced here differs from the 
one usually used. We found that it leads to a somewhat simpler parametric dependence 
of the oscillations in the probability distribution of the vibrational quanta. The complex 
quantity N, appearing in (2), is determined by the normalization condition 1a.I2 = 1: 

Explicitly, the time-dependent wavefunction representing the squeezed state is 

'u,,(x, r ) = Y e x p ( - 6 ( ~ - & ) ~ )  (4) 

where 

with 

0/2*5- Of. ( 8 )  c - 1 fS e - 2 i ~ t  * -  
The squeezed states have a number of interesting properties. They are not mutually 
orthogonal, The set {V3z(x: t ) )  is (over)complete. The probability density lYsz(x2 f ) 1 2  
is normalized Gaussian with halfwidth changing periodically in time and depending 
only on the squeeze parameter s (it is independent of the other complex parameter 
z ) .  The general squeezed state W,,(x, I )  in time is not a minimum-uncertainty state; 
nevertheless, every full period it becomes four times a minimum-uncertainty state. The 
uncertainties Sx and Sp oscillate in width, out of phase; the uncertainty in one of the 
two dynamically conjugate variables x and p can become less than the corresponding 
one in a coherent state. When Is( + 0 and simultaneously IzI +. +W, in such a way that 
the product sz2 remains equal to a complex constant (=a2/2), reduction to the 
corresponding coherent state is easily observed. In particular, equation (2) gives in 
this limiting case a. + ( m " / n ! ' / ' )  exp(-la12/2). Reduction to the squeezeduacuum state 
( ! z l+  0) is also easily observed. 
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Next, we turn our attention to the conditions which produce oscillations in the 
probability distribution 

of the vibrational quanta of squeezed states. Firstly, we note that the oscillations (if 
any) are time independent. According to the semi-classical considerations presented 
in [S-101 the probability )aJ2 of finding n vibrational quanta in the squeezed state is 
governed by the overlap in the phase space between the elliptical band (with the area 
Zafi), representing the nth number state u.(x) ,  and the squeezed-state uncertainty 
ellipse [13, 141 

based on the joint x - p  probability distribution (Wigner-Cohen function) P,,(x, p J ) =  
lqsz(x, t)121@sz(p, t)l2 introduced in [15,16]. Here, QSz(p,  1 )  denotes the corresponding 
momentum space wavefunction. The centre of the squeezed-state uncertainty ellipse 
is defined with 

( 1 0  
S E + S * E *  
S+S* = x cos(wt - $0) x,( t )  = (x) = 

and 

(12) 

The point (x , ( t ) ,  p , ( t ) )  follows classical motion of the harmonic oscillator with 

-2ifilSI'(~ - E * )  
P c ( t ) = ( P ) =  S+S* = -moX sin(wt -p). 

.̂....l:...r(n 
' u " y " L " Y c  

and phaseshift 

In (lo), Sx and Sp denote the uncertainties 

with 

denoting the halfwidth of the harmonic oscillator ground state uo(x).  The phase space 
path, traced by the centre of the squeezed-state uncertainty ellipse, is therefore defined 
with 



L1052 Letter to the Editor 

Consider now, for example, the special case ot - rp = Zkn, with k an integer. In order 
to get intersection (and, consequently, oscillations [E-IO]) between the elliptical band, 
representing the nth number state u.(x), and the squeezed-state uncertainty ellipse, 
the conditions X < 2un"' and P < (Sp),.. must be approximately satisfied. Here 

U ( -g)'/2. 
Such considerations lead in this case (and in general as well, since the oscillations are 
time independent) to the condition nmjn< n < nmax, with nmjn= (X/2u)* and nmax I 
nmin+ (1 + Isl)/( 1 - \S I )  which must be fulfilled for oscillations in the probability distribu- 
tion of excitation to appear. We found, however, that this is not sufficient; additionally, 
the phase 5 of the complex parameter z must be in the vicinity of l = O  or I= 
r(lIm{z)l<< 121). In such a case, nmi. reduces to n,j.=21s11z12/(1+lsl)Z. Moreover, 
nmi. +)z)*/2 in the limit of large squeezing (when the squeeze parameter 1s) + 1). A 
generic example is depicted in figure 1. The observed dependence on 5 comes from 
the factor I H . ( Z ) ~ ~  in (9).  Indeed, with the help of the explicit expression for H.(z) 
given in [17] we obtain, after some algebra, 

[ " / 2 1  
I H . ( z ) ~ ~ =  2(n!)' (-l)'CP)cos(2kf) 

k =O 

with [ n / 2 ]  denoting the integer part of n / 2  and with positive coefficients C',.' = Cp'( 121) 
defined via 

Inthecase5=Oor5=?r,thesumin(20) reducestothealtematingoneX',l~l(-l)'CP'. 
Because of delicate balancing of terms in this sum, an increase in the value of the 
vibrational quantum number n can (and usually does) result in a large change in its 
value leading to the observed oscillations. The factor INI2 (Isl"/Z'n !) modulates and/or 
suppresses these oscillations (present, in principle, for any Isl). In the other extreme 
case, when 5 = 7r/2 or C = 3 r / 2  the sum in (20) reduces simply to Z',!:] Cp) leading 
to smooth and monotonic variation with n, and the oscillations are absent. 

In conclusion, in this letter we have discussed the conditions for the existence of 
oscillations in the distribution of the vibrational quanta for the general case of the 
time-evolving squeezed state (which does not remain a minimum-uncertainty state) of 
the one-dimensional harmonic oscillator. In particular, we introduced a different 
parametrization of squeezed states and, with its help, found that in addition to the 
usual conditions which produce oscillations, the value of the phase 5 of the complex 

expression for the expansion coefficient a. of the squeezed state in the number state 
basis, is important. We found that, in order to obtain the oscillations, the phase must 
have a value in the vicinity of 5 = 0 or 5 = n. We showed how this necessary condition 
results from the explicit expression for lH.(z)I2. 

The oscillations discussed in this letter have been recognized as a striking feature 
of highly non-classical, squeezed states. To detect these states in the realm of quantum 
optics, using oscillatory counting distribution, it is important to know the conditions 
leading to the oscillations. From a wider perspective, it has become possible in recent 
years to almost perfectly isolate single quantum harmonic oscillators from their environ- 
ment [U-191, thus enabling detailed investigations of the dynamics of this simplest 

nnmma+er - whirh is +ha s l m m m m n t  nf the U m r m i t e  nnlvnnmisl ~ n n r s & o  in !he y"."...'." ., ,.... -.. "-* ...., y-..J.." .... I. "rr--...-D 



Letter to the Editor L1053 

Figore 1. Probability laml2 of finding n vibrational quanta in a squeezed state for thrcc 
different choices of the phase Z indicated on the figure. All curves here arc plotted, for 
definiteness. for the same value IT) = 6. The probability is independent of time f and phase 
0 of the complex squeeze parameter s. As I increases fmm the zero value the oscillations 
rapidly vanish. 

of all quantum systems. Such studies will, hopefully, yield a deeper understanding of 
quantum mechanics of single, isolated systems. 
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